Inspiring Future, Grand Challenge

Search
Close
search
 
  • home
  • {url:0}
  • {url:1}
  • {2}

For more details on the courses, please refer to the Course Catalog

교육과정
Code Course Title Credit Learning Time Division Degree Grade Note Language Availability
ECE5422 Thin Film Technology Applications 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering English Yes
Thin films are unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, and nonequilibrium microstructure. The lecture reviews the properties of thin films and offers the various method of thin film growth and characterization. This lesson applies to many valuable electronic devices such as resistor, inductor, capacitor, thin film transistor, VLSI, sensor, and memory device.
ECE5423 Semiconductor Devices 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering English Yes
Semiconductor devices discusses the physical characteristics of semiconductor, and the theory and application of pn diode, MOS devices, and BJT which are the core devices to make moder
ECE5429 Topics on Properties of Electronic Engineering Materials 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
By the information of carrier movements in the periodic arrangement of atoms, the lecture explains the conduction mechanisms in a solid matter. This lecture also deal with the thermal properties such as specific heat, thermal conduction, thermal expansion, and other thermal induced effect. Some other topics such as Brillouin zone, effective mass, conductivity, and carrier movement will be treated in this course work.
ECE5461 Lower Power VLSI Design 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
This course covers process/device lower power design, circuit design ; lower power DRAM circuit design, Lower power high-level (architecture/logic) synthesis ; power-driven layout synthesis.
ECE5467 Analog IC Design 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering English Yes
This course provide a simulation technique and CMOS device modeling for analog design. Based on the basic design technique, the course cover the following subjects for memory design, Current Mirror Circuit, OP-Amp design, Reference Circuit Design, Charge Pump Design, PLL/DLL design and I/O Buffer design.
ECE5471 Analog/Mixed-Signal Design 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering Korean Yes
Analog/mixed-signal design treats interface circuit design techniques for analog/digital data conversion and filtering which are useful for embedding in the SoC.
ECE5511 Advanced Optoelectronics 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering English Yes
Advanced optical electronics course. Review of nonlinear optics, second harmonic generation, parametric amplification and oscillation, fluoresence, third-order otpical nonlinearity, stimulated Raman and Brillouin scattering, phase conjugation, photorefractive beam coupling, Q-switching and mode lockingof lasers.
ECE5515 Nanophotonics 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
Nanophotonics, defined by the fusion of nanotechnology and photonics, is a multidisciplinary field which deals with the interaction between a matter and photons in nano-meter scaled space. In this lecture, we will deal with various nanophotonic applications, including plasmonics, photonic crystal, quantum dots, nanolithography, and so forth.
ECE5521 Numerical Analysis of Electromagnetic Field 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
Numerical solutions of electromagnetic field are calculated using Finite Element Methods. (FEM) The basic theories of variational method, Dirichlet and Neumann boundary conditions, Rayleigh- Ritz method, and Garlerkin's method are surveyed. Finite element idealizations, discretization, and equation assembly processes are explored. FEM applies to electro - magnetostatics and the students are strongly encouraged to calculate electro- magnetic fields of many different boundary conditions, using finite element packages.
ECE5524 RF Intergrated Circuits 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
This course deals with the analysis and design of RF integrated circuits and systems. The course begins with the necessary background knowledge from microwave and communication theory and explains the differences between analog IC and RF IC design. Next, the course explores RF transceiver architectures and presenting various receiver and transmitter topologies along with merits and drawbacks. Then, the design of RF building blocks is followed including low noise amplifiers and mixers, oscillators, and frequency synthesizers. After finishing this course, the students will deeply understand the internal operation of modern transceivers and have basic knowledge and design skills for RFICs.
ECE5546 Data Compression Theory 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
This class introduces fundamental theories and practical algorithms necessary to understand various lossless data compression techniques widely used for digital data such as audio, video, and text. It makes students have real experiences of dealing with such techniques by programming exercises. This class starts with introducing information theory and signal processing theory which lay basic foundation for lossless compression. Followed are the Huffman coding, arithmetic coding, and their many derivatives. Next topics are the dictionary-based compression methods such as LZW and the predictive coding method. The later part of the class is dedicated to analysis and hands-on programming exercises of practical lossless techniques found in the most recent JPEG and MPEG standards and recent relevant technical papers.
ECE5550 DSP Design 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
The objective of this class is to enhance understanding of DSP theories and providing application capability of such theories through hands-on system design on DSP training system. The class begins with introduction of DSP system, data flow, parallel architecture, followed by FFT implementation and audio/video dedicated DSP processor. The class assigns projects of designing specific algorithms or simple systems in DSP applications in which students perform system design, coding, and analysis of experimental results using DSP application training system.
ECE5576 Advanced Network Design 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
This course is an advanced study of the current state-of-the-art in network design technologies. Emphasis is on design principles, managing the challenges required to apply these technologies to engineering problems and managing the infusion of new technologies as the state-of-the-art advances. Key areas of study include design methodologies and architectures, network technologies; queuing theory and traffic engineering; standards. System design will focus on planning for future technologies and integration challenges. Specific topics covered include MAC, TCP, IP Routing, MPLS Traffic Engineering. Multimedia protocol; Packet Classification; network security;
ECE5578 Media Communication 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
This course introduces fundamental technologies for multimedia, especially image and video communications and networking. We will address following topics; how to efficiently represent and process video signals, image and video compression and communication standards(H.26x, MPEG-1/2/4), multimedia network protocols (RTP/RTCP, etc.), layered or scalable video coding and multicast video, streaming multimedia over the Internet and wireless networks, error control in video communications.
ECE5580 Mobile Communications 3 6 Major Master/Doctor 1-4 Electrical and Computer Engineering - No
This course covers various topics on mobile communications, which include structures of mobile switching center, traffic analysis, personal communications network, propagation phenomenon (fading, shadowing) in mobile communications channels, error control coding (ARQ, error correction, RS codes, convolutional/trellis codes), channel estimation, multiple access techniques (FDMA/TDMA/CDMA), and diversity techniques (maximal ratio and equal gain combining).